Modelling Acoustic Transmission Loss Due to Sea Ice Cover
نویسندگان
چکیده
The propagation of underwater acoustic signals in polar regions is dominated by an upward refracting sound speed environment and the presence of a dynamic highly variable ice canopy. This paper provides an overview of the acoustic properties of sea ice and assesses the influence of ice canopy and water column properties on acoustic transmission loss for propagation within 20 km of a sound source at 20 m depth. The influence of the ice canopy is assessed first as a perfectly flat surface, and then as a statistically rough surface. A Monte Carlo method is used for the inclusion of ice deformation and roughness. This involves the creation of sets of synthetic ice profiles based on a given sea ice thickness distribution, followed by statistical methods for combining the output of individually evaluated ice realisations. The experimental situation being considered in the framing of this problem is that of an Autonomous Underwater Vehicle (AUV) operating within 50 m of the surface. This scenario is associated with a frequency band of interest of 9-12 kHz and a horizontal range of interest up to 20 km. The situation has been evaluated for a set of typical ice statistics using Ray and Beam acoustic propagation techniques. The sound speed profile (based on real data) results in a strong defocussing of direct path signals at ranges from 9-20 km and depths shallower than 50 m. This reduction in the signal strength of the direct path creates areas where the influence of surface reflected paths becomes significant. The inclusion of a perfectly flat ice layer reduces the transmission loss between 9-20 km by 15-50 dB. When the ice layer is included as a rough surface layer the results show a boost to signal strength of up to 8 dB in the small areas of maximum defocussing. Sea ice is a strongly time and space varying sea surface and exists in areas where defocussing of the direct path due to the sound speed profile reduces the range of direct path dominated transmission. This work presents methods for including a statistically relevant rough surface through a technique for generation of sets of surfaces based on ice deformation statistics. It outlines methods for including ice in acoustic modelling tools and demonstrates the influence of one set of ice statistics on transmission loss.
منابع مشابه
Environmental Predictors of Ice Seal Presence in the Bering Sea
Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background s...
متن کاملThe spatial distribution of solar radiation under a melting Arctic sea ice cover
[1] The sea ice cover of the Chukchi and Beaufort Seas is currently undergoing a fundamental shift from multiyear ice to first‐year ice. Field observations of sea ice physical and optical properties were collected in this region during June–July 2010, revealing unexpectedly complex spatial distributions of solar radiation under the melt‐season ice cover. Based on our optical measurements of fir...
متن کاملAn increasing CO2 sink in the Arctic Ocean due to sea-ice loss
[1] The Arctic Ocean and adjacent continental shelf seas such as the Chukchi and Beaufort Seas are particularly sensitive to long-term change and low-frequency modes of atmosphere-ocean-sea-ice forcing. The cold, low salinity surface waters of the Canada Basin of the Arctic Ocean are undersaturated with respect to CO2 in the atmosphere and the region has the potential to take up atmospheric CO2...
متن کاملInterannual Variations of Arctic Cloud Types in Relation to Sea Ice
Sea ice extent and thickness may be affected by cloud changes, and sea ice changes may in turn impart changes to cloud cover. Different types of clouds have different effects on sea ice. Visual cloud reports from land and ocean regions of the Arctic are analyzed here for interannual variations of total cloud cover and nine cloud types, and their relation to sea ice. Over the high Arctic, cloud ...
متن کاملArctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea.
A 13-month time series of Arctic Ocean noise from the marginal ice zone of the Eastern Beaufort Sea is analyzed to detect under-ice acoustic transients isolated from ambient noise with a dedicated algorithm. Noise transients due to ice cracking, fracturing, shearing, and ridging are sorted out into three categories: broadband impulses, frequency modulated (FM) tones, and high-frequency broadban...
متن کامل